Células são parecidas com computadores?

Células basicamente têm as mesmas funções que computadores. Eles enviam e recebem entradas e saídas de sinais em conformidade. Se você toma um Frappuccino, seus picos de açúcar no sangue, e suas células pancreáticas obtém a mensagem. Saída: mais insulina.

Mas a computação celular é mais do que apenas uma metáfora conveniente. Nas últimas duas décadas, os biólogos têm trabalhado para cortar o algoritmo das células em um esforço para controlar seus processos. Eles viravam o papel da natureza como engenheiro de software da vida, editando gradualmente o algoritmo de uma célula – seu DNA – ao longo das gerações. Em um artigo publicado Nature Biotechnology , os pesquisadores programaram células humanas para obedecer 109 conjuntos diferentes de instruções lógicas. Com o desenvolvimento posterior, isso poderia levar a células capazes de responder a direções específicas ou pistas ambientais, a fim de combater a doença ou fabricar produtos químicos importantes.

Suas células executam essas instruções usando proteínas chamadas recombinases de DNA, que cortam, reorganizam ou fundem segmentos de DNA. Essas proteínas reconhecem e direcionam posições específicas em uma cadeia de DNA – e os pesquisadores descobriram como desencadear sua atividade. Dependendo se a recombinase é provocada, a célula pode ou não produzir a proteína codificada no segmento de ADN.

Uma célula pode ser programada, por exemplo, com uma porta lógica chamada NOT. Esta é uma das instruções de lógica mais simples: NÃO faça algo sempre que você receber o gatilho. Os autores deste estudo usaram esta função para criar as pilhas que iluminam acima no comando. O biólogo Wilson Wong, da Universidade de Boston, que liderou a pesquisa, refere-se a essas células manipuladas como “circuitos genéticos”.

Células cancerígenas têm impressões digitais biológicas, como um tipo específico de proteína. Juno Therapeutics , uma empresa com sede em Seattle, possui engenhenosas células imunes que podem detectar essas proteínas e células-alvo de câncer especificamente. Se você colocar portas lógicas nessas células imunes, você pode programar as células imunológicas para destruir as células cancerosas de uma forma mais sofisticada e controlada.

As células programáveis têm outras aplicações potenciais. Muitas empresas usam células de levedura geneticamente modificadas para produzir produtos químicos úteis. A Ginkgo Bioworks , uma empresa com sede em Boston, usa essas células de levedura para produzir fragrâncias, que elas vendem a empresas de perfumes. Este fermento come açúcar como a levedura de cerveja, mas em vez de produzir álcool, produzem moléculas aromáticas. A levedura ainda não é perfeita, as células tendem a mutar ao se dividirem, e depois de muitas divisões, param de funcionar bem. Narendra Maheshri, um cientista de Ginkgo, diz que você pode programar o fermento para se autodestruir quando ele parar de funcionar corretamente, antes de estragar um lote de colônia de alto grau.

O grupo de Wong não foi o primeiro a fazer portas de lógica biológica, mas eles são os primeiros a construir tantos com sucesso consistente. Dos 113 circuitos que construíram, 109 trabalharam. “Na minha experiência pessoal construindo circuitos genéticos, você teria sorte se trabalhassem 25% do tempo”, diz Wong. Agora que eles obtiveram esses circuitos genéticos básicos para funcionar, o próximo passo é fazer com que as portas lógicas funcionem em diferentes tipos de células.

Mas não será fácil. As células são incrivelmente complicadas – e o DNA não tem interruptores “on” e “off” diretos como um circuito eletrônico. Nas células de engenharia de Wong, você “desativa” a produção de uma determinada proteína alterando o segmento de DNA que codifica suas instruções. Em outras palavras: É difícil depurar 3 bilhões de anos de evolução.

Anúncios

Adaptação e plasticidade fenotípica

O termo “seleção natural” foi aceito unanimemente pela comunidade científica já a muito tempo. Podemos então dizer, que os organismos evoluem conforme as variações do seu meio (temperatura, salinidade, PH, etc), e assim se adequando conforme essas variações, e os que não tiveram a capacidade de se adaptar se extinguem. Mas a questão é: como que os organismos se adaptam ao ambiente em que estão situados?

Para esta pergunta teremos duas respostas: adaptação genética e plasticidade fenotípica.


Adaptação genética

A adaptação genética é um conjunto de alterações herdadas nas características que favorecem a sobrevivência de uma espécie em um determinado ambiente. Os organismos se adaptam por conta da sua mutação genética.

Quando dizemos mutação genética, significa que todos os organismos, serão diferentes geneticamente, inclusive os de mesma espécie.

Por exemplo: um vírus ataca uma população de uma espécie de peixes. Muitos dos peixes daquela espécie poderão morrer por conta do vírus, mas alguns deles conseguirão criar imunidade sobre o vírus. Portanto, estes foram selecionados pela natureza como os peixes mais resistentes da espécie, e irão passar essa resistência para as próximas gerações do peixe, e sendo assim, podendo perpetuar sua espécie.

Podemos notar grandes diferenças dentro da mesma espécie. Vamos adotar características

Operários – Tarsila do Amaral

humanas, padrões dos povos indígenas, africanos e europeus.

Percebemos que logo de cara conseguimos imaginar cada um deles com grandes diferenças: Indígenas com pouca pelagem no corpo por conta do grande contato com a água, os africanos com tons de peles mais escuros por conta do grande contato com o sol, e os europeus com pelagem densa por conta do frio. Ou seja, as variações do local diferenciaram os seres humanos de regiões diferentes para se adequar ao seu meio vivente.


Plasticidade fenotípica

Plasticidade fenotípica é a capacidade de expressar características morfológicas, fisiológicas e/ou comportamentais, em resposta as condições ambientais, em um único fenótipo. É muito fácil associarem a plasticidade fenotípica a evolução, já que ela é dependente das condições ambientais. Já na visão tradicional, por um ambiente não ser um efeito genético ele não tem uma influência direta na mudança evolutiva. Porém, possui uma grande diferença de características, mesmo que limitada pelo o que o genótipo pode expressar.

Ou seja, um único genótipo é capaz de mudar características físicas,  químicas, fisiológicas e/ou morfológicas em resposta das variações ambientais,

 A evolução da plasticidade fenotípica adaptativa levou ao sucesso de organismos em novos habitats e potencialmente contribui para a diferenciação genética e especiação. Tomadas em conjunto, as respostas fenotípicas nas interações ambientais representam modificações que podem levar a mudanças recíprocas no tempo ecológico, padrões comunitários alterados e potencial evolutivo expandido das espécies.

Um tipo clássico de plasticidade fenotípica é o polifenismo, que consiste em  fenótipos descontínuos influenciados pelo ambiente. O da raposa do ártico, é um grande exemplo de polifenismo, onde sua plasticidade adaptativa consiste na mudança da pelagem dependendo das estações do ano. No verão, sua peagem fica acinzentada ou acastanhada, fazendo com que se camufle entre as rochas. E no inverno, sua pelagem muda para um branco muito claro, permitindo se camuflar na neve.


Coevolução entre espécies

A interação entre espécies  e plasticidade fenotípica, cada vez mais tem gerado interesse entre ecologistas. O estudo de fenótipos responsivos de um organismo para outro organismo, é definido como uma investigação de coevolução. Biologistas também possui uma curiosidade crescente neste assunto, porém nesse caso, não se trata da interação entre espécies, e sim, em um estudo de uma espécie levando em conta a variável da outra espécie.

No entanto, na natureza é bastante provável que os indivíduos interagentes estejam continuamente respondendo aos seus parceiros de interação de forma recíproca ao longo do tempo ecológico. Uma interação recíproca implica em uma resposta de “vai-e-vem em termos de mudança fenotípica entre os indivíduos.Um exemplo de coevolução é a interação predador-presa, onde o predador procura criar ferramentas para se especializar em caçar a presa, e a presa procura se especializar em não ser caçada. E por causa disso, cada vez que um deles cria uma nova maneira de se beneficiar, o outro também precisará criar novas maneiras de se favorecer.

Quando um herbívoro começa a se alimentar muito de uma determinada espécie de planta, e o herbívoro se procria mais e mais, e começa a se alimentar mais ainda da planta, até chegar num estado crítico, haverá apenas duas saídas para a planta, ou se extingue totalmente, ou por mutualismo, se especializa e perpetua sua espécie. Digamos que a planta se especializou em veneno. O herbívoro precisará de alguma outra forma de se alimentar, se adaptar de alguma forma, que supere os veneno de sua presa. Então o predador, ao longo do tempo, e muita seleção, se especializou em suportar o veneno em seu organismo. E assim por diante, onde cada um dos dois vão criando novas maneiras para se perpetuar. Muitas interações antagônicas ou mutualistas, incluindo aquelas que não são comportamentais, podem envolver fenótipos recíprocos.


Referências:

http://www.uel.br/pessoal/ambridi/Bioclimatologia_arquivos/AdaptacaoeAclimatacaoAnimal.pdf

https://ai2-s2-dfs.s3.amazonaws.com/50b1/e0b4ad8fa94b8231b3d83ccac2d6929d23d4.pdf